Are the Elusive Ions $^{-}CH_{2}SH$, $^{-}CH_{2}OH$, and $^{-}CH_{2}NH_{2}$ Detectable in the Gas Phase? A Joint ab Initio/Experimental Approach

Table I. Ab Initio Calculations on Ions ⁻CH₂XH^a

Kevin M. Downard,^{1a} John C. Sheldon,^{1a} John H. Bowie,^{*,1a} David E. Lewis,^{1b} and Roger N. Hayes^{1c}

Contribution from the Departments of Chemistry, The University of Adelaide, Adelaide, South Australia, 5001 Australia, and University of Nebraska, Lincoln, Nebraska 68588-0362. Received October 4, 1988

Abstract: Ab initio calculations at the MP4SDTQ/6-311⁺⁺G^{**}//6-311⁺⁺G^{**} level indicate the electron affinities of $^{\circ}$ CH₂SH, $^{\circ}$ CH₂OH, and $^{\circ}$ CH₂NH₂ to be +5.6, -8.8, and -16.2 kcal mol⁻¹; thus $^{\circ}$ CH₂OH and $^{\circ}$ CH₂NH₂ should be unstable with respect to their radicals. In accord with these predictions, "CH2SH may be observed experimentally; neither "CH2OH nor "CH2NH2" is observed directly in our experiments but their participation in intermediate and transient ion complexes in particular reactions may be inferred. The ΔH°_{acid} values for CH₃SH, CH₃OH, and CH₃NH₂ are calculated to be 399, 413.5, and 418 kcal mol⁻¹. making ⁻CH₂NH₂ and ⁻CH₂OH, at least theoretically, among the most powerful of all gas-phase bases.

The ΔH°_{acid} values of MeSH, MeOH, and MeNH₂ are 357,² 381,² and 403³ kcal mol⁻¹, respectively; thus deprotonation leads to MeS⁻, MeO⁻, and MeNH⁻. The isomeric ions ⁻CH₂SH, $^{-}CH_{2}OH$, and $^{-}CH_{2}NH_{2}$ are of much theoretical interest. They have been shown to be stable (i.e., lie in potential wells) by ab initio calculations,⁴ and it has been suggested that ⁻CH₂OH could transform to the more stable MeO over a barrier of some 46 kcal mol^{-1,5} Yet none of these ions have been reported in gas-phase studies, and the possibility must be considered that they are unstable with respect to their corresponding radicals (i.e., the electron affinities of the radicals may be negative).⁶ If that is so, then it follows that the anions, theoretically at least, must be among the strongest of all gas-phase bases.7

In this paper we report the use of ab initio calculations to estimate (i) the electron affinities of 'CH2SH, 'CH2OH, and $^{\circ}CH_2NH_2$ and (ii) the ΔH°_{acid} values for CH_3SH , CH_3OH , and CH₃NH₂. In addition, we describe experimental procedures planned to detect the formation of the three anions.

Experimental Section

Negative ion chemical ionization mass spectra and collisional activation (CA) and charge reversal (CR) mass spectra were measured with an MM VG ZAB 2HF mass spectrometer. The chemical ionization slit was used in the ion source: ionizing energy, 70 eV (tungsten filament); ion source temperature, 150 °C; and accelerating voltage, -8 kV. All slits were fully open to obtain maximum sensitivity and to minimize energy-resolution effects.⁸ The reagent ions NH_2^- , MeO^- , and EtO^- were formed from NH_3 , MeONO,⁹ and EtONO,⁹ respectively. The indicated source pressure of NH₃ (or RONO) was 5×10^{-4} Torr. All liquid substrates were introduced through the septum inlet at 150 °C. The substrate pressure was typically 5×10^{-7} Torr. The estimated total pressure in the ion source was 10⁻¹ Torr. The pressure of He in the second collision cell (for CA mass spectra) was 2×10^{-7} Torr, measured

(1) (a) University of Adelaide.
 (b) On leave at University of Adelaide from Baylor University, Waco, TX.
 (c) University of Nebraska.
 (2) Bartmess, J. E.; McIver, R. T. J. Am. Chem. Soc. 1979, 101, 6047.

- (3) MacKay, G. J.; Hemsworth, R. S.; Bohme, D. K. Can. J. Chem. 1976, 54, 1624.
- (4) Pross, A.; DeFrees, D. J.; Levi, B. A.; Pollack, S. K.; Radom, L.; Hehre, W. J. J. Org. Chem. 1981, 46, 1693 and references cited therein. Schleyer, P. v. R.; Clark, T.; Kos, A. J.; Spitznagel, G. W.; Rohde, C.; Arad, D.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. **1984**, 106, 6467 and references cited therein

(5) Sheldon, J. C.; Bowie, J. H.; Lewis, D. E. Nouv. J. Chim. 1988, 12, 269.

(6) For recent references to calculations on CH₂XH radicals, see: Coolidge, M. B.; Borden, W. T. J. Am. Chem. Soc. 1988, 110, 2298. Pasto, D.

 J. J. M. Chem. Soc. 1988, 110, 8164 and references cited therein.
 (7) DePuy, C. H.; Bierbaum, V. M.; Damrauer, R. J. Am. Chem. Soc. 1984, 106, 4051.

1984, 100, 4051.
(8) Terlouw, J. K.; Burgers, P. C.; Hommes, H. Org. Mass Spectrom.
1979, 14, 307. Burgers, P. C.; Holmes, J. L.; Mommers, A. A.; Szulejko, J. E. J. Am. Chem. Soc. 1984, 106, 521.
(9) Farid, R.; McMahon, T. B. Int. J. Mass Spectrom. Ion Phys. 1978, 1978.

27, 163.

(i) $HF/6-311^{++}G^{*+}//6-311^{++}G^{**}$ (ai) hartrees, (ii) $MP4SDTQ/6-311^{++}G^{**}//6-311^{++}G^{**}$; (iii) zero-point vibrational energy (MP4SDTQ/6-311^{++}G^{**}//6-311^{++}G^{**}).

by an ion gauge situated between the collision cell and the electric sector. This produced a decrease in the main beam signal of ca. 10% corresponding to essentially single collision conditions. Similar conditions were

Table II. Ab Initio Calculations on Radicals 'CH₂XH^a

^aGeometries UHF/6-311⁺⁺G^{**}//6-311⁺⁺G^{**} (Å, deg). Energies: (i) UHF/6-311⁺⁺G^{**}//6-311⁺⁺G^{**} (au) hartrees, and (ii) MP4SDTQ/6-311⁺⁺G^{**}//6-311⁺⁺G^{**}]; (iii) zero-point vibrational energy (MP4SDTQ/6-311⁺⁺G^{**}//6-311⁺⁺G^{**}).

used for charge reversal spectra¹⁰ except that the polarity of the electric sector voltage was reversed.

Samples were commercially available except for R_3SiCH_2SH ,¹¹ R_3SiCH_2OH ,¹² and $R_3SiCH_2NH_2^{13}$ (R = Me and Et) which were prepared by reported procedures. The labeled compounds Me_3SiCH_2SD , Me_3SiCH_2OH , $(DSCH_2)_2$, and $(DOCH_2)_2$ were made by exchange of the appropriate neutral with D_2O at 20 °C for 1 h. Incorporation (D_1 or D_2 as appropriate) was greater than 90% in all cases as shown by ¹H NMR and positive ion mass spectrometry.

Results and Discussion

A. Ab Initio Calculations. Ab initio calculations were performed using GAUSSIAN 86.¹⁴ Geometries and energies of anions, radicals, and neutrals are shown in Tables I–III. The conformers adopted by the negative ions (assumed singlet states) and radicals (assumed doublet states) were identified from a number of conformational starting points, and then fully optimized by the Berny routine at the UHF/6-311⁺⁺G^{**} level. All structures were confirmed as proper potential energy local minima with respect to force constants and to constraints on the wave function, by harmonic frequency analysis and standard tests of wave-function stability. A final single-point correlation-corrected energy was computed for each conformer by fourth-order Moller–Plesset theory (MP4SDTQ/6-311⁺⁺G^{**}/6-311⁺⁺G^{**}).

The related ions ⁻CH₂SH and ⁻CH₂OH each give "syn" [1 and 3 (Table I)] and "anti" (2 and 4 (Table I)] conformers. Both anti conformers have low torsional force constants around the

Table III. Ab Initio Calculations on Neutrals CH₃XH^a

H ₁		H ₁		Η ₁	н,
H21111C-	—ś	H21111C	-°_ _н	H2111C-	—N [™] H
C, symmetry		C_s symmetry		C_s symmetry	
(i) -437.74149		(i) -115.08051		(i) -95.24617	
(ii) -438.07924		(ii) -115.47645		(ii) -95	63103
(iii) 0.04889		(iii) 0.05477		(iii) 0.06804	
cs `́	1.8183 Å	CO	1.4003 Å	CN	1.4541 Å
SH	1.3306 Å	ОН	0.9398 Å	NH	0.9994 Å
СН	1.0819 Å	CH1	1.0817 Å	CH1	1.0907 Å
сн;	1.0811 Å	CH2	1.0877 Å	CH ₂	1.0847 Å
H ₁ ČS	106.46°	H ₁ CO	107.24°	H ₁ CN	114.45°
H,CS	111.1 2°	H ₂ CO	111.78°	H ₂ CN	109.34°
сŝн	97.98°	COH	110.02°	CNH	111.33°
H ₂ CSH ₁	±118.45°	H ₂ COH ₁	118.78°	H_2CNH_1	121.38°
•1		- •		HNCH ₁	60.01°

^aGeometries RHF/6-31⁺⁺G^{**}//6-311⁺⁺G^{**}(Å, °). Energies: (i) RHF/6-311⁺⁺G^{**} (au) hartrees, and (ii) MP4SDTQ/6-311⁺⁺G^{**}//6-311⁺⁺G^{**}; (iii) zero-point vibrational energy (MP4SDTQ/6-311⁺⁺G^{**}//6-311⁺⁺G^{**}).

Table IV. Calculated Electron Affinities of $^{\circ}CH_2XH$ and Gas-Phase Acidities of CH_3XH (X = S, O, and NH)

CH₂XH	EA(CH ₂ XH) (kcal mol ⁻¹)	$\frac{\Delta H^{\circ}_{acid}(CH_{3}XH)}{(kcal mol^{-1})^{a}}$	
CH,SH	+5.6	399	
CH ₂ OH	-8.8	413.5	
CH ₂ NH ₂	-16.2	418	

 ${}^{a}\Delta H^{o}_{acid}$ (CH₃XH) = (total energy H⁺ + ⁻CH₂XH + zero-point energy correction) – (energy of CH₃XH + zero-point energy correction), e.g., ΔH^{o}_{acid} (CH₃OH) = (0.0 – 114.80102 + 0.0 + 0.03800) – (-115.47645 + 0.05477) = 0.65866 au = 413.5 kcal mol⁻¹.

central single bond. The syn conformer 1 of ${}^{-}CH_2SH$ is more stable than the anti form by 1.1 kcal mol^{-1,15} whereas the anti conformer 4 of ${}^{-}CH_2OH$ is more stable than the syn form by 3.9 kcal mol⁻¹; cf. ref 4. The ion ${}^{-}CH_2NH_2$ adopts only the gauche (C_1) form 5 (Table I).¹⁶ The radicals ${}^{+}CH_2SH$ and ${}^{+}CH_2OH$ each adopt a single and similar low-energy C_1 conformer: an almost planar trans HCXH arrangement with the other CH bond some 30° out of plane. The radical ${}^{+}CH_2NH_2$ adopts an anti (C_s) conformer of lowest energy.

The data in Tables I and II may be used to determine the electron affinities of the three radicals. For example, the electron affinity of $^{\circ}CH_2SH$ is the MP4/6-311⁺⁺G^{**}//6-311⁺⁺G^{**} energy of 6 (Table II, corrected for zero-point energy) minus the MP4/6-311⁺⁺G^{**}//6-311⁺⁺G^{**} energy of 1 (Table I, corrected for zero-point energy) = +5.6 kcal mol⁻¹. The electron affinities of $^{\circ}CH_2OH$ and $^{\circ}CH_2NH_2$ are -8.8 and -16.2 kcal mol⁻¹ respectively. Thus the ab initio calculations predict that $^{-}CH_2SH$ is stable (with respect to electron loss), whereas $^{-}CH_2OH$ and $^{-}CH_2NH_2$ are both unstable with respect to their respective radicals.

The ΔH°_{acid} values for the reactions CH₃XH \rightarrow H⁺ + ⁻CH₂XH may be determined from MP4 SDTQ/6-311⁺⁺G^{**}//6-311⁺⁺G^{**} calculations of CH₃XH and ⁻CH₂XH (see Table I for geometries and energies of anions, Table III for geometries and energies of neutrals, and Table IV for the ΔH°_{acid} values).¹⁷ The ΔH°_{acid} values for CH₃NH₂ and CH₃OH (418 and 413.5 kcal mol⁻¹, respectively) predict that ⁻CH₂NH₂ and ⁻CH₂OH are among the strongest of gas-phase bases (cf. Et⁻, ΔH°_{acid} (C₂H₆) estimated at 421 kcal mol⁻¹).⁷ Even ⁻CH₂SH is predicted to be only slightly less basic than NH₂⁻ (ΔH°_{acid} for CH₃SH and NH₃ are 399 and 403.5³ kcal mol⁻¹, respectively).

⁽¹⁰⁾ Bowie, J. H.; Blumenthal, T. J. Am. Chem. Soc. 1975, 97, 2959. Szulejko, J. E.; Bowie, J. H.; Howe, I.; Beynon, J. H. Int. J. Mass Spectrom. Ion Phys. 1980, 13, 76.

⁽¹¹⁾ Noller, D. C.; Post, H. W. J. Org. Chem. 1952, 17, 1393.

⁽¹²⁾ Ambasht, S.; Chiu, S. K.; Peterson, P. E.; Queen, J. Synthesis 1980, 318.

⁽¹³⁾ Fessenden, R. J.; Yasuda, D.; Coon, M. D. J. Org. Chem. 1962, 27, 1485.

⁽¹⁴⁾ GAUSSIAN 86, Release C; Frisch, M.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Martin, R.; Stewart, J. J. P.; Bobrowicz, F.; DeFrees, D.; Seeger, R.; Whiteside, R.; Fox, D.; Fluder, E.; Pople, J. A. Carnegie Mellon University: Pittsburgh, PA.

⁽¹⁵⁾ All energies designated in kcal mol⁻¹ throughout this paper have been corrected for zero-point vibrational energies as given by the frequency analysis in the GAUSSIAN 86 program.

⁽¹⁶⁾ The effect of the substituent R on the stability of ions $^{-}CH_2R$ has been discussed in full previously.^{4,5}

 ⁽¹⁷⁾ For a recent description of the method, see: Siggel, M. R. F.; Thomas,
 T. D.; Saethre, L. J. J. Am. Chem. Soc. 1988, 110, 91.

Table V. CA Mass Spectra

precursor ion ^a	m/z (loss) abundance %
HSCH ₂ CH ₂ S ⁻	92 (H*) 12, 91 (H ₂) 3, 60 (HS*) 1, 59 (H ₂ S) 4,
	58 $H_2S + H^{\bullet}$) 3, 47 (C H_2S) 2, 46 (C $H_2S +$
	H^{\bullet}) 3, 33 (C_2H_4S) 100.
DSCH ₂ CH ₂ S ⁻	93 (H [•]) 15, 92 (H ₂ , D) 8, 61 (HS [•]) 8, 60 (H ₂ S,
	DS [•]) 12, 59 (HDS) 9, 58 (H ₂ DS) 7, 48
	(CH_2S) 6, 46 $(CH_2S + D^{\bullet})$ 7, 34 (C_2H_4S)
	100, 33 (C_2H_3DS) 56.
HSCH ₂ CO ₂ ⁻	90 (H [•]) 100, 89 (H ₂) 15, 75 (O) 78, 73 (H ₂ O)
	54, 47 (CO ₂) 63, 46 (HCO ₂) 12, 45 (CO ₂ +
	H ₂) 84.
HOCH ₂ CH ₂ O ⁻	59 (H_2) 100, 31 (CH ₂ O) 5, 29 (CH ₂ O + H ₂) 1.
HOCH ₂ CO ₂ ⁻	74 (H [•]) 100, 73 (H ₂) 18, 57 (H ₂ O) 6, 47 (CO)
	61, 45 (CO + H_2) 15, 17 (C ₂ H_2O_2).
NH ₂ CH ₂ CH ₂ NH ⁻	58 (H [•]) 100, 57 (H ₂) 61, 42 (NH ₃) 46, 26
	(CH ₂ N).
NH,CH,CO,	73 (H [•]) 100, 72 (H ₂) 12, 56 (H ₂ O) 4, 46 (CO)
	8, 45 (HCO,•) 9.

^aPrepared from the appropriate neutral by reaction with NH₂⁻.

Table VI. CA and Charge Reversal (CR) Mass Spectra of MeS-, -CH₂SH, and MeO-

precursor ion	spectrum type	[m/z (abundance %)]
MeS ⁻ ^a	CA CR	46 (100), 45 (29), 33 (3) and 32 (92) see Figure 1
[−] CH ₂ SH (from HSCH ₂ CO ₂ [−]) MeO [−] ^b	CA ²⁴ CR CA CR	46 (81), 45 (63), 33 (30), 32 (100) see Figure 1 30 (5), 29 (100) and 16 (0.6) ⁵ 31 (18), 29 (100), 28 (16), 17 (1), 16 (2), 15 (9), 14 (3), 13 (2), and 12

^a Formed by the reaction between NH_2^- and dimethyl disulfide. ^b Formed by the reaction between NH_2^- and methanol.

B. Experimental Approach. The calculations outlined above predict that CH2SH should be directly observable whereas CH₂OH and CH₂NH₂ should not. Three experimental procedures were used for the attempted formation of each of the three anions: viz. (i) collision-induced dissociation of the bis-substituted ethane derivative (eq 1, X = S, O, or NH as appropriate), (ii)

$$HXCH_2CH_2X^{-} \xrightarrow{CA} HXCH_2^{-} + CH_2X$$
(1)

collision-induced dissociation of the appropriate carboxylate anion¹⁸ (eq 2), and (iii) the $S_N 2$ (Si) reaction of the appropriately sub-

$$HXCH_2CO_2^- \xrightarrow{CA} HXCH_2^- + CO_2$$
 (2)

stituted trimethylsilyl derivative (eq 3).19

$$Nu^- + Me_3SiCH_2XH \rightarrow HXCH_2^- + Me_3SiNu$$
 (3)

(a) Methylene Thiol Anion (CH2SH). The CA mass spectra of $HS(CH_2)_2S^-$ and $HSCH_2CO_2^-$ are recorded in Table V. The spectrum of $HS(CH_2)_2S^-$ shows a small peak at m/z 47, while that of $DS(CH_2)_2S^-$ yields m/z 48 ($^{-}CH_2SD$). This confirms the operation of eq 1 in this case. The CA mass spectrum of the thioglycollate ion also shows a peak at m/z 47 (Table V). The MS/MS/MS spectrum²⁰ of this ion shows similarities to that of

Figure 1. (a) Charge reversal spectrum of MeS⁻ [from (MeS)₂] (VG ZAB 2HF); for experimental details see Experimental Section. (b) Charge reversal spectrum of m/z 47 from HSCH₂CO₂⁻ (Kratos MS 50 TA); for experimental details see ref 23.

MeS⁻ (Table VI), but the CR (positive ion) spectra^{10,20} of m/z47 and MeS⁻ are quite different (see Figure 1). Ion MeS⁻ yields Me⁺ and S⁺⁺, whereas m/z 47 from thioglycollate gives CH_2^{++} and SH⁺, thus substantiating the formation of $^-CH_2SH$ by eq 2.

The S_N2 (Si) reaction between Me₃SiCH₂SH and NH₂⁻ in the ion source of the mass spectrometer gives a pronounced peak at m/z 47. However, the CA and CR mass spectra of this ion identify it as MeS⁻, not ⁻CH₂SH (Table VI). Further, reaction between Me₃SiCH₂SD and NH₂⁻ yields m/z 47, not m/z 48. The corresponding reaction between MeO⁻ and Me₃SiCH₂SH also produces MeS⁻. We suggest that these data are accommodated by reaction sequences 4 and 5. Consider, for example, sequence

$$NH_{2}^{-} + Me_{3}SiCH_{2}SH \rightarrow [Me_{3}Si(NH_{2})(CH_{2}SH)] \rightarrow a$$

$$[^{-}CH_{2}SH(Me_{3}SiNH_{2})] \rightarrow [MeSH(Me_{3}SiNH)] \rightarrow c$$

$$MeS^{-} + Me_{3}SiNH_{2} (4)$$

 $MeO^- + Me_3SiCH_2SH \rightarrow [Me_3Si(OMe)(CH_2SH)] \rightarrow$ $[^{C}H_{2}SH(Me_{3}SiOMe)] \rightarrow (MeSH[^{C}H_{2}(Me)_{2}SiOMe]) \rightarrow$ $MeS^- + Me_3SiOMe$ (5)

4. Nucleophilic addition forms a which decomposes through b.

⁽¹⁸⁾ Stringer, M. B.; Bowie, J. H.; Eichinger, P. C. H.; Currie, G. J. J.

⁽¹⁸⁾ Stringer, M. B.; Bowle, J. H.; Eichinger, F. C. H.; Curne, G. J. J. Chem. Soc., Perkin Trans. 2 1987, 387 and references cited therein. Graul, S. T.; Squires, R. R. J. Am. Chem. Soc. 1988, 110, 607.
(19) DePuy, C. H.; Bierbaum, V. M.; Flippin, L. A.; Grabowskii, J. J.; King, G. K.; Schmitt, R. J.; Sullivan, S. A. J. Am. Chem. Soc. 1979, 101, 6443. Klass, G.; Trenerry, V. C.; Sheldon, J. C.; Bowie, J. H. Aust. J. Chem. 1981, 34, 519.
(20) The CA and CB many space of sulf. A7 from the CA many space of sulf.

⁽²⁰⁾ The CA and CR mass spectra of m/z 47 from the CA mass spectrum of HSCH₂CO₂⁻ (CA/MS/MS/MS and CR/MS/MS/MS spectra, respectively) were measured with the triple sector Kratos MS 50-TA instrument at tively) were measured with the triple sector Kratos MS 50-1A instrument at the University of Nebraska—Lincoln. Operating procedures have been de-scribed previously.²¹ Specifically, deprotonation was effected by MeO⁻ (from MeONO²²) in a Kratos Mark IV CI source: ion source temperature, 100 °C; electron energy, 280 eV; emission current, 500 μ A; accelerating voltage, -8 kV; measured source pressures, thioglycollic acid (2 × 10⁻⁵ Torr), methyl nitrite (1 × 10⁻⁶ Torr) (estimated total source pressure 10⁻¹ Torr); He pressure in each collision cell, 2×10^{-6} Torr, producing a decrease in the main beam signal of 30%.

⁽²¹⁾ For general experimental details, see: Burinsky, D. J.; Cooks, R. G.; Chess, E. K.; Gross, M. L. Anal. Chem. 1982, 54, 295. Gross, M. L.; Chess, E. K.; Lyon, P. A.; Crow, F. W.; Evans, S.; Tudge, H. Int. J. Mass Spectrom. Ion Phys. 1982, 42, 243.

⁽²²⁾ Ridge, D. P.; Beauchamp, J. L. J. Am. Chem. Soc. 1974, 96, 3595 and references cited therein.

Figure 2. Collisional activation mass spectrum of DOCH₂CH₂O⁻ (VG ZAB 2HF instrument).

Within complex b, $^{-}CH_2SH$ deprotonates Me₃SiNH₂ [ΔH°_{acid} for CH₃SH (see above) and Me₃SiNH₂²³ are 399 and 379 kcal mol⁻¹, respectively] to yield c in which Me₃SiNH⁻ deprotonates MeSH to yield MeS⁻ and Me₃SiNH₂.²⁴

(b) Hydroxymethylene Anion (⁻CH₂OH). We have been unable to detect $^{-}CH_2OH$ directly. For example, no species at m/z 31 is present in the CA mass spectrum of $HOCH_2CO_2^-$ (Table V). However, the transient formation of the ion may be inferred by indirect evidence. The CA mass spectrum of deprotonated ethylene glycol (Table V) shows a peak at m/z 31 whereas decomposition of DO(CH₂)₂O⁻ does not give m/z 32 (⁻CH₂OD) but yields m/z 31 (MeO⁻) (Figure 2). Thus ⁻CH₂OD may be formed as part of an ion complex d (eq 6) in which $^{-}CH_2OD$ deprotonates formaldehyde yielding e which subsequently decomposes to MeO-.

(23) Thomas, D.; Bartmess, J. E., unpublished work. Cited in: Bartmess, J. E.; The 1987 Gas Phase Acidity Scale; University of Tennessee: Knoxville, TN.

(24) (a) The alternative three-body reaction

 $\mathrm{NH_{2}^{-}+Me_{3}SiCH_{2}SH} \xrightarrow{\mathrm{NH_{3}}} [^{-}CH_{2}SH(\mathrm{NH_{3}})] \rightarrow [(\mathrm{MeSH})\mathrm{NH_{2}^{-}}] \rightarrow$ $[MeS^{-}(NH_3)] \rightarrow MeS^{-} + NH_3$

is unlikely because of the low probability of (i) the three-body collision and (ii) the initial deprotonation step. (b) A reviewer has suggested that the alternative reaction

$$\begin{array}{l} Me_{3}SiCH_{2}SH + MeO^{-} \rightarrow Me_{3}SiCH_{2}S^{-} \rightarrow Me_{3}Si^{-}(CH_{2}S) \rightarrow \\ MeS^{-} + Me_{2}Si = CH_{2} \end{array}$$

must also be considered because of the exothermicity of the first step. This seems an unlikely reaction sequence, since (i) Me₃Si⁻ is not known as a hydride ion donor [Sheldon, J. C.; Bowie, J. H.; DePuy, C. H.; Damrauer, R. J. Am. Chem. Soc., **1986**, 108, 6794] and (ii) the reaction Me₃Si⁻ \rightarrow H⁻ + Me₂Si=CH₂ is strongly endothermic (calculated at 6-31+G level, +116 kcal mol⁻¹ -[Sheldon, J. C.; Bowie, J. H. J. Chem. Soc., Perkin Trans. 2 1988, 1263].

$$DOCH_{2}CH_{2}O^{-} \rightarrow [DOCH_{2}^{-}(CH_{2}O)] \rightarrow [(MeOD)HCO^{-}] \rightarrow d e \\ MeO^{-} + HDCO (6)$$

$$NH_{2}^{-} + Me_{3}SiCH_{2}OH \rightarrow [Me_{3}Si(NH_{2})(CH_{2}OH)] \rightarrow$$

$$[^{-}CH_{2}OH(Me_{3}SiNH_{2})] \rightarrow [MeOH(Me_{3}SiNH)] \rightarrow$$

 $MeO^- + Me_3SiNH_2$ (7)

The $S_N 2$ (Si) reaction between NH_2 and Me_3SiCH_2OH yields m/z 31 whose CA and CR mass spectra are identical with those of MeO⁻ (Table VI). The analogous reaction between Me₃SiCH₂OD and NH₂⁻ gives m/z 31 (MeO⁻) consistent with the mechanism shown in sequence 7.²⁵

(c) Aminomethylene Anion ($^{-}CH_2NH_2$). We have been unable to detect this ion either directly or indirectly using the three standard methods. Neither deprotonated 1,2-diaminoethane nor glycine yields m/z 30 (Table V); similarly the S_N2 (Si) reaction between NH_2^- and $Me_3SiCH_2NH_2$ gives no peak at m/z 30.²⁶ However, the reaction between HO⁻ and Me₃SiCH₂NH₂ does form Me₃SiO⁻ (eq 8). This is a standard reaction⁷ and does

$$HO^- + Me_3SiCH_2NH_2 \rightarrow [Me_3Si(OH)(CH_2NH_2)] \rightarrow Me_3SiO^- + MeNH_2$$
 (8)

indicate that CH2NH2 has at least transient existence in an ion-dipole or ion-induced dipole complex.

Conclusions

A combination of experiment and theory has shown that (i) $^{-}CH_{2}SH$ is a stable species and can be observed experimentally; (ii) ⁻CH₂NH₂ and ⁻CH₂OH are unstable with respect to their radicals, but may be detected indirectly as ion complexes in reaction pathways; and (iii) the relative basicities of the studied species are $^{-}CH_2NH_2 > ^{-}CH_2OH > ^{-}CH_2SH.^{27}$

Acknowledgment. This work was supported with a grant from the Australian Research Grants Scheme. One of us (D.E.L.) thanks the University of Adelaide for the award of a Distinguished Visiting Fellowship. We are grateful to C. H. DePuy for helpful discussion.

1984, 106, 4051.

(30) Calculated from data given in Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. (Gas Phase Ion and Neutral Thermochemistry) J. Phys. Chem. Ref. Data 1988, 17, Suppl 1, p 690.

⁽²⁵⁾ The abundance of MeO⁻ in this reaction is less by a factor of ~ 100 This is consistent with the difficulty of the final deprotonation step shown in eq.7; i.e., $[MeOH(Me_sSiNH)] \rightarrow MeO^- + Me_sSiNH_2$, since the reported ΔH°_{acid} values of MeOH and Me₃SiNH₂ are 381 ± 2² and 379 ± 3.5²³ kcal mol⁻, respectively.

⁽²⁶⁾ The reaction sequence here would be $NH_2^- + Me_3SiCH_2NH_2$ favorable since ΔH°_{acid} of MeNH₂ and Me₃SiNH₂ are 403³ and 379²³ kcal mol⁻¹, respectively.

⁽²⁷⁾ A reviewer has suggested that the corresponding $MeXCH_2^-$ ions are comparable in stability (to the HXCH2⁻ ions) based on expected substituent effects, but with a reduced chance of isomerization. The reviewer indicates that previous data bear directly upon, and support the HXCH2⁻ data presented in this paper; i.e., MeSCH₂', MeOCH₂', and Me₂NCH₂' have electron affinities of 20,²⁸ -0.4 ± 3 ,²⁹ and less than -8.7^{30} kcal mol⁻¹, respectively. (28) Moran, S.; Ellison, G. B. J. Phys. Chem. **1988**, 92, 1794. (29) DePuy, C. H.; Bierbaum, V. M.; Damrauer, R. J. Am. Chem. Soc.